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Abstract

This study was comprised of two parts. The first was to determine the effectiveness of speaker

identification under two different speaker identification degradation conditions, additive noise

and speaker interference, using the LPC cepstral coefficient approach. The second part was to

develop a method for determination of co-channel speech, i.e., speaker count, and to develop an

effective method of either speech extraction or speech suppression to enhance the operation of

speaker identification under co-channel conditions. The results of the first part of study indicate

that under conditions of the same amount of either noise or corrupting speech, for example 0 dB

SNR or TIR (target-to-interference ratio), noise is much more detrimental than corrupting speech

to the operation of the speaker identification. For example, with 100% of 0 dB corrupting speech

there still occurs a certain number of correct speaker identifications, i.e., about 40% accuracy.

Ten (10) dB TIR interfering speech, as well as small amounts of interfering speech, i. e., 40% 0

dB TIR are not as detrimental to speaker identification. The results of the second part of the

study indicate that a system for speaker count and speaker separation is possible. The harmonic

sampling approach, developed during the study, uses the periodic structure of the fine structure

of the frequency characteristics of voiced speech. Successful reconstruction of a single speaker

indicates the potential of this approach as a candidate for speech separation. Also, it was shown

that detection of co-channel speech is possible using the harmonic sampling approach. Further

improvements as well as other possible approaches to the co-channel speech problem are

discussed.
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CO-CHANNEL SPEECH AND
SPEAKER IDENTIFICATION STUDY

Robert E. Yantorno

Introduction

Co-channel speech is defined as a speech signal which is a combination of speech from two

talkers. The goal of co-channel research has been to be able to extract the speech of one of the

talkers from the co-channel speech. This can be achieved by either enhancing the target speech

or suppressing the interfering speech. This co-channel situation has presented a challenge to

speech researchers for the past 30 years. There are systems where the separation of two speakers

is possible and this is well documented in the literature. However, this requires that there be

more than one sensor (in the case of speech, more than one microphone) and therefore, by

making use of the dissimilar recording conditions, the speech from two different speakers can be

extracted, for example Chang et al (1998) and Weinstein et al (1993). Some recent investigations

conducted on co-channel speaker separation are; Savic et al (1994), Morgan et al (1995),

Benincasa & Savic (1997), Yen & Zhao (1997) for speech recognition and Meyer et al (1997)

using the approach of amplitude modulation mapping and reassignment (a vector quantization

process). However, separation of the target speaker from co-channel speech has been very

difficult. Therefore, to make the problem more manageable, it is worthwhile to ask what is the

final use of the target speech. For example, if the final goal is that a human listener will use the

speech, then intelligibility and quality would be important characteristics of the extracted speech.

However, if the extracted speech is to be used for speaker identification, then one would be

concerned with how much and what type of target speech is need to perform “good” speaker

identification, i.e., voiced and unvoiced speech or just voiced speech. Therefore, determining the

effect of speaker interference on speaker identification would be of considerable interest. Also,

the development of an effective target speaker extraction technique, which would provide for

major improvement of co-channel speech, would also be a very useful tool. The goal of this

study is to better understand how interfering speech degrades the functioning of speaker

identification, and to also develop a method for extracting enough target speech from co-channel

speech to provide sufficient speech information about the target speaker that one can make a

reliable identification of the target speaker.
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The situation with co-channel speech can be viewed in three different ways, i.e., as either an

extraction of the target speech, as a suppression of the interference speech, or as an estimation of

both speech signals. All these methods have been developed and each requires a very different

approach. Therefore, study of the effect of speaker interference on speaker identification would

be helpful in choosing between extraction, suppression or estimation, and would also provide

information on the development of the method to assist in speaker identification under varying

co-channel conditions.

Speaker Identification Study

As outlined above, the first part of the study was to determine the effectiveness of speech

identification using the LPC cepstral coefficient approach under two different speaker

identification degradation conditions, additive noise and speaker interference. Information on

that part of the study is discussed below.

Additive Noise

Methodology

For the initial part of the study, speech material was taken from the Timit database. The number

of speakers used for training was 15 males and 15 females. The number of files for training for

each speaker was 5. The files were taken from the dialect region 1 (dr1 subdirectory). Also, 15

male and 15 female speakers were used for testing, and were taken from the same dr1

subdirectories. It should be noted that the test speakers were the same speakers used for training,

i.e., the speaker identification tests were conducted under closed conditions. The files used for

training were the “sx” prefix speech files and the testing files were “sa” and “si”  prefix speech

files, which were all different speakers speaking the same utterance.

Results

The initial part of section 1 of this study was to determine the effect of noise on the accuracy of

the speaker identification. The amount of noise added was varied, either by adding a specific

amount of noise, in dB, to the entire utterance or by adding a percentage of 0 dB noise to the

speech. The range of added noise in dB was 0 to 30 dB, and the percentage range of 0 dB added

noise was 20 to 100 percent. Noise was always added to the center of the utterance. This was
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done to ensure that even at a low percentage of added noise, i.e., 20% noise, the probability of

noise being placed in a region of speech would be greater than if the noise was placed at the

beginning or end of the speech file. This was done because for most utterances there is a certain

amount of silence prior to the onset of speech. Therefore, if noise was added to the beginning of

the speech file, a certain part of the noise would always be added to silence, and would not

contribute to the degradation of the speaker identification process. Results of the percent noise

added experiments are shown in Figures 1a. and 1b. One important observation that can be made

is that there is an almost linear inverse relationship between percent correct speaker

identification and percent noise (figure 1b.).

Figure 1a.   Figure 1b.

Figure 1. Speaker Identification – Percent Correct versus 0 dB SNR of Noise
added to speech. Figure 1a. – male and female speakers. Figure 1b. represents the
combined results of  figure 1a.

The results of varying the signal-to-noise ratio are shown in figures 2a and 2b. The most

dramatic decrease in speaker identification occurs between 20 and 10 dB. Also, it can be noted in

figure 2b that 10 dB SNR is enough to totally degrade the speaker identification operation.

Openshaw & Mason (1994) obtained similar results, where the effects of noise on the speaker

identification using both the mel-cepstral coefficient technique as well as perceptual linear

prediction-RASTA method were studied.
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   Figure 2a. Figure 2b.

Figure 2. Speaker Identification – Percent Correct versus SNR of noise in dB
added to speech (100% of speech corrupted by noise). Figure 2a. – male and
female speakers. Figure 2b. is the combined result of figure 2a.

If one assumes that the noise experiments represent extreme conditions for speech corrupting

speech, then certain conclusions can be drawn about the level, in dB, and amount of 0 dB speech

that might be tolerable before one will observe a decease in percent correct speaker identification

of co-channel speech. For example, one could tolerate about 40% of 0 dB SNR corruption

speech with only a slight decrease of about 15 percent in percent correct (figure 1b.). Also, any

corrupting speech of 20 dB target-to-interfere ratio (TIR), also referred to as signal-to-

interference ratio (SIR), should have little effect on the speaker identification, in this case about

20 percent decrease in speaker identification percent correct. Therefore, the noise experiments

provide a lower bound measure from which one can infer how well the speaker identification

system will work under co-channel conditions.

Speaker Interference

Methodology

To determine the effect of corrupting speech on the accuracy of speaker identification, corrupting

speech was added to test files. The amount of corrupting speech added was varied either by

adding a specific amount of corrupting speech, in dB, to the entire utterance or by adding a

percentage of 0 dB target-to-interfere ratio (TIR). The range of corrupting speech in dB was 0 to

30 dB TIR, and the percentage of 0 dB TIR ranged from 20 to 100 percent. As with the noise

experiments, and for the same reason, corrupting speech was added to the center of the utterance.
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Results

Two sets of four experiments were conducted. For one set, the corrupting speech was drawn

from one of the speakers of the training and testing data, but was not the same utterance as used

for that speaker’s training or testing. These experiments are identified as “closed set”

experiments and the results are shown in figures 3a. and 3b.

   Figure 3a. Figure 3b.

Figure 3. “Closed Set” Speaker Identification Experiments. Figure 3a. Percent
Correct versus Percent of 0 dB TIR (Target-to-Interferer Ratio). Figure 3b. –
Percent Correct versus TIR in dB of corrupting speech added to speech (100% of
speech corrupted by speech).

For the other set of experiments, the corrupting speech was drawn from speakers outside the

training and testing data. These experiments are identified as “open set”, and the results are

shown in figures 4a. and 4b. For both the closed and open set experiments there were four

different types of experiments: 1.) male speech corrupted by either male or 2.) separately by

female speech (results are identified as male in figures 3 and 4) and 3.) female speech corrupted

by either male or 4.) separately by female speech (results are identified as female in figures 3 and

4).

One major observation that can be made with respect to figures 3 and 4 is that even with 100%

corruption of 0 dB TIR there still exists a certain number of correct speaker identifications, i.e.,

about 40% accuracy. This indicates that corrupting speech has a smaller effect on the speaker
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identification system than does noise, substantiating the point made earlier about noise

contamination of speaker identification being the “worst” case.

      Figure 4a.         Figure 4b.

Figure 4. “Open Set” Speaker Identification Experiments. Figure 4a. Percent
Correct versus Percent of 0 dB TIR. Figure 4b. – Percent Correct versus TIR in
dB of corrupting speech added to speech (100% of speech corrupted by speech).

This result seems reasonable because 0 dB TIR does not spread the energy over the entire

utterance as in the case of the noise experiments. It is also evident that although there is an

almost linear inverse relationship between percent correct and percent added corrupting speech

(figure 4a.), as in the case of noise (figure 1b.), the slope is not as steep, again as expected. Also,

for the closed set experiments, figures 3a. and 3b., male speaker identification appears to be

more sensitive to corrupting speech than does female speaker identification. A smaller effect can

be observed with the open set experiments shown in figures 4a. and 4b.

Finally, a comparison is made between the “open” and “closed” set experiments and the results

are shown in figures 5a. and 5b. The major observation to be made is that for speaker

identification, corrupting speech with speech from outside the training data tends to have a

greater effect on the percent correct than corrupting speech from within the training data, i.e., for

the 100% of 0 dB TIR corruption speech condition the percent correct was 40% (for the closed

condition) and 35% (for the open condition), or about 5% decrease in percent correct.

0 20 40 60 80 100
-10

0

10

20

30

40

50

60

70

80

90

100

Percent of 0dB TIR Speech
Added

male
female

-10 0 10 20 30 40
-10

0

10

20

30

40

50

60

70

80

90

100

TIR [dB] (100% Added Speech to Speech Ratio)

male
female



17- 9

             Figure 5a.       Figure 5b.

Figure 5. Comparison of data from “Closed Set” and “Open Set” Speaker
Identification Experiments. Figure 5a. Percent Correct versus Percent of 0 dB
TIR. Figure 5b. – Percent Correct versus TIR in dB of corrupting speech added to
speech (100% of speech corrupted by speech).

It should be noted that Yu & Gish (1993) obtained comparable results for experiments similar to

the ones shown in figures 3 and 4. Their goal was to identify either one or both speakers engaged

in dialog using speech segments rather than frames and speaker clustering.

Co-channel Speech

Introduction

The second part of this project was to develop a method for effective determination of co-

channel speech, i.e., speaker count, and be able to extract enough speech information about the

target speech so that a reliable identification of that speaker could be made. The method which
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should be noted that the method presented here is similar to the approaches of Doval & Rodet
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determination and tracking of music signals. It should also be mentioned that there is some

similarity between the method outlined here and the maximum likelihood pitch estimation
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used for the method outlined here. However, they did mathematically analyze their method in the
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frequency domain and determined that maximizing their peak estimator was equivalent to

finding the comb filter which passes the maximum signal energy, which is the basis for the

harmonic sampling method presented in this study.

Harmonic Sampling Method

If one observes the frequency domain characteristics of a voiced portion of a speech signal, it can

be noted that there are two distinct attributes, the spectral envelope of the speech signal, and the

fine structure which is a series of pulses. The spectral envelope consists of the frequency

characteristics of the vocal tract. The fine structure consists of the frequency characteristics of

the excitation which is the input to the vocal tract. The excitation for voiced speech is

characterized by periodic time pulses produced by the vocal cords which produce periodicity in

the frequency domain. The fine structure and its periodicity are illustrated in figure 6 below. The

periodicity of the fine structure is the basis for the approach presented. Because we are using the

fine structure, and the fine structure only exists during voiced speech, this means that only the

voiced portions of speech will be used. Also, voiced speech appears to carry much more speaker

identification information than unvoiced speech.

Figure 6. Frequency characteristics of a frame of speech – magnitude in dB versus
frequency in Hz, 800 point frame, Hamming windowed, and sampled at 8 kHz.
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Figure 7. Time and frequency characteristics of speech from single speakers -
speaker #1 (7a. and d.), speaker #2, (7b. and 7e.) and combined speakers #1 and
#2 (7c. and 7f.)

For the case of co-channel speech, it is expected that the frequency characteristics of two

speakers is additive. However, the magnitude characteristics are additive but also contain a cross

term. Therefore, the overall fine structure will be a quasi-linear combination of fine structure of

the two speakers’ speech. This is illustrated in figure 7f. As stated, the approach in this study

uses the fine structure as a method for determining if there is more than one speaker present and

also, very importantly, uses the information obtained as a means of extracting the target speech.

The experiment, for speaker count and speaker separation, entailed using a variable spacing
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their pitch detection method. Using the harmonic sampling method, the frequency spectrum is

“swept”, sampling the spectrum at discrete frequencies, and adding all of samples, in this case

31, at each frequency step. The result will be a graph with a peak at the fundamental frequency.

However, after some work on filter design and further considerations, it was recognized that one

need only sample the spectrum, and therefore, the comb filter was not needed. A series of

diagrams of harmonic sampling for various values of sampling spacing are shown in figure 8

below.

     Figure 8a.                  Figure 8b.                          Figure 8c.

Figure 8. Harmonic sampling. Three different harmonic sampling spacings, less
than fundamental (8a), at fundamental (8b), and at 2x fundamental (8c).

The sampling of the magnitude spectrum results in a peak at the fundamental, but also results in

“harmonic-like peaks” at locations related to the fundamental. This situation is illustrated in

figure 8c. It is evident that there will be a peak due to the spacing as illustrated in figure 8c.

Because we are using a fixed number of lines, the height of that peak will be about half the

height of the main peak. However, there will also be a peak at half the fundamental, for example,

using figure 8b., if there were twice as many lines as shown, there would be lines located

halfway between the lines shown, at the nulls of the spectrum.

 Input
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Figure 9. Block diagram of target extraction procedure. Input is co-channel
speech and output is target speech.
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The height of this peak will also be about one-half the height of the main peak. The entire

harmonic sampling method is outlined in the block diagram, shown in figure 9 above.

A peak-picking algorithm was developed to determine the main peak associated with the

stronger speaker’s speech. To illustrate the effectiveness of the peak-picking algorithm

uncorrupted speech was used. The spectrum of uncorrupted speech was sampled at the

fundamental and all of the harmonics up to harmonic 30. A plot of the magnitude spectrum, the

sampled harmonic spectrum, and the reconstructed magnitude spectrum are shown in figures

10a., 10b. and 10c. respectively.

Figure 10. Magnitude frequency plots for original (upper), harmonically sampled
(middle) and reconstructed spectrum (lower).
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It was determined that the magnitude spectrum provided a much better main peak, in terms of

height above the other random peaks, than either the power spectrum or log magnitude spectrum.

Also, a slight positive slope was observed for the harmonic sampling results. A fourth order

polynomial fit of the data was subtracted from the data to provide a better environment for peak

picking. Windows of various lengths were investigated, and a length of 400 points appeared to

be the optimal in terms of frequency-time resolution and shape and size of the major harmonic

peak. The 400-point frame was windowed using a Hamming window and was zero padded to

8000 points prior to performing the FFT. This results in each point in the harmonic sampling

result plot to be equal to 1 Hz. It should be noted that this is not the resolution of the harmonic

sampling approach. Note, the Timit speech data was down sampled prior to processing from 16

KHz to 8 KHz using Entropic’s ESPS sfconvert utility. Fifty percent overlap was used during the

analysis phase to compensate for the windowing of the frame.

Once the spectral lines are obtained, the convolution of these lines with the frequency

characteristics for the Hamming window is necessary in order to obtain a “window” time

function similar to the original speech frame from which the spectral data was obtained (see

figure 10 above). Finally, for reconstruction, the frames were overlapped by 50% to duplicate the

overlap process used for extracting and analyzing the speech frame. Using both the harmonically

sampled magnitude and phase characteristics for reconstruction did not provide a very good

reproduction of the new frame. Therefore, the entire phase characteristics were used for

reconstruction. This results in very good duplication as shown in figure 12 below.

Figure 11. Windowed frame of speech, original speech (upper) and reconstructed
speech (lower).
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How well does this approach track the pitch of a single speaker?  A voiced/unvoiced detector

was obtained from Dan Benincasa and Stan Wenndt (of the Speech Processing Lab). The result,

for male speech, is shown in the figure 12 below. It is evident that the algorithm works very well,

and therefore this is a good candidate for use as a pitch tracker as well as a tool for speech

extraction.

Figure 12a. (upper) and 12b. (lower)                  Figure 12c. (upper) and 12d. (lower)

Figure 12. Time plots of speech signals. Figure 12a. Identification of voiced (1),
unvoiced (0.5) and silence (0) sections of speech signal. Figure 12b. Pitch versus
time for voiced portions of utterance. Figures 12c. & 12d. Original and
reconstructed speech, respectively.

How effective is the algorithm in determining the existence of two speakers? The results shown

in figures 13a., 13b. and 13c. represent the results of speech data shown in figures 7a., 7b., and

7c., respectively for single speakers (figures 13a. and 13b.) and co-channel speech (figure 13c.).

As can be noted, the pitch of both speakers is clearly seen in figure 13c., as marked by the

straight lines in the middle of the two tallest peaks. Note the peak on the right in figure 13c is not

at the location where one would expect a multiple of the pitch of the largest peak, and therefore

the peak on the right represents the pitch of another speaker.

0 0.5 1 1.5 2

x 10
4

-1.5

-1

-0.5

0

0.5

1

1.5
 Original speech

Sample Number

A
m

pl
it

ud
e

0 0.5 1 1.5 2

x 10
4

-1.5

-1

-0.5

0

0.5

1

1.5

Sample Number

Reconstructed speech



17- 16

Figure 13. Harmonic sampling results for single speakers (speaker #1) figure 13a.,
(speaker #2) figure 13b., and for co-channel speech (a mixture of speaker #1 and
speaker #2) figure 13c.

Conclusions
It has been shown that the harmonic sample approach can be used for speaker count, where the

pitch of both speakers are not the same. It has also been shown that the harmonic sampling

approach can be used to extract very effectively and quite accurately the voiced portions of a

single speaker. The harmonic sampling approach outlined above offers promise as a mechanism

for extracting the voiced portion of target speech. However, there are problems to overcome and

improvements which can be made.

Further Improvements for the Harmonic Sampling Method

For example, the occurrence of small spurious peaks close to the main pitch peak need to be

eliminated, possibly by smoothing the harmonic sampling resultant or by using their occurrence

as an indicator not to use that frame of speech.  Also, large spurious peaks far from the main

peak need to be understood in terms their origin, and to be reduced, eliminated or possibly used

as an indicator not to use that frame of speech. Also, the harmonic sampling method may be able

to be used to determine if the frame being analyzed is voiced, unvoiced or silence, possibly by

using some sort of indicator of the existence of large peaks for voiced, small peaks for unvoiced

and no peaks for silence. The final item for investigation is to determine a way to identify

speaker #1 speech and speaker #2 speech, and to track their speech. This will require more

sophisticated ways in which the speech of a specific speaker is identified. One possibility would

be to use a pitch tracking approach such as the one developed by Doval & Rodet (1993) who
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used a probabilistic Hidden Markov model or model space, or the approach of Dorken & Nawab

(1994) which uses principle decomposition analysis.

It should be noted that the approach outlined here might be useful as a pitch detector as well as a

voiced/unvoiced detector. The method of Wise et al (1976) has been shown to be resistant to

noise. Therefore, because of the similarity between harmonic sampling and maximum likelihood

pitch estimation, harmonic sampling should also be resistant to noise.

Finally, this speech separation approach shows promise in terms of being able to extract the

interfering speech by subtracting the reconstructed speech from the original speech using either

the frequency domain or the time domain.

Areas of Possible Further Study

Speaker Count

I feel that developing a system for identifying co-channel speech is possible. However, to be able

to identify co-channel speech will require using unorthodox types of approaches. One such

approach would be to use the approach of speech recognition similar to that used for language

identification. It seems reasonable that co-channel speech, which is the result of speech corrupted

by speech, will not have the same time domain structure as traditional speech, and therefore will

not have the same type of phonetic structure as single speaker speech.  This means that

recognition would not be successful and would therefore indicate the existence of co-channel

speech.

It also seems possible that an effective speaker count approach could be developed using

information in the time domain. It is evident from inspection of the co-channel speech that there

is a dramatic change in the overall structure as compared with single speaker speech (compare

figure 7c. with either figure 7b. or 7a.). If a time domain speaker count system could be made

then this speaker count system could be used as the front-end of a speech separation system. This

would ascertain whether a frame of speech is from a single or multiple speakers. If it is co-

channel speech then it would be processed by the speaker separation system. However, if it is



17- 18

from a single speaker the frame would not be processed, thereby reducing computation time as

well as eliminating any possible degradation of the speech using the speech separation system.

Another possible approach would be to use LPC to determine the presence of co-channel speech.

For example, if two speakers were talking at the same time, they usually would not be saying the

same thing. Therefore, each speaker would be producing different speech sounds and each

speaker would then have a different vocal tract configuration at any instant in time. This would

seem to suggest that a series of LPC analyses could be done on a single frame. Assuming that

one has co-channel speech, LPC analysis would be performed on the speech. Once a set of LPC

coefficients had been obtained their effect could be subtracted from the co-channel speech by

inverse filtering. Then performing a subsequent LPC analysis on the inverse filtered signal

should produce another set of LPC coefficients only if co-channel speech is present. Note, this

approach could only be used to detect co-channel speech. It would not be able to extract the

target speaker’s speech.

Speaker Separation

Although there is no information available about using singular value decomposition (SVD) for

co-channel speech, it might be a possible approach. Kanjilal & Palit (1994) have used SVD as a

means of extracting two periodic stationary waveforms from noisy data; in this case the

waveforms were maternal and fetal electrocardiograms. It should be noted that their approach

had no requirement for multiple sensors, but did require that the signals be stationary.

Finally, AM mapping and spectrum reassignment by Meyer et al (1997) seems to provide some

promise as a means of separating speakers under co-channel speech conditions. They suggest

that the modulation maps are good models for human perceptual data, and by using a reassigned

spectral approach, frequency resolution is increased.
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